Claves para que la IA no se deje engañar

Resulta increíblemente fácil manipular a una inteligencia artificial para que clasifique imágenes de forma incorrecta. Para evitarlo, un equipo propone entrenar al sistema para que solo tenga en cuenta los patrones reales que de verdad están vinculados a las imágenes. Sin embargo, no funciona al 100%.

Hemos escrito anteriormente sobre el concepto de los ejemplos antagónicos, una especie de pequeños cambios que, cuando se incorporan a un modelo de aprendizaje profundo, producen una mala reacción. El mes pasado, publicamos una crónica de la charla de la profesora de la Universidad de California en Berkeley (EE. UU.) Dawn Song en la que contó cómo había usado unas simples pegatinas para engañar a un coche autónomo para que creyera que una señal de alto en realidad era un límite de velocidad de 50 kilómetros por hora. También explicó que logró usar mensajes específicos para que un modelo basado en texto revelara datos confidenciales, como los números de las tarjetas de crédito.

A medida que los sistemas de aprendizaje profundo han ido penetrando en nuestras vidas, los investigadores han empezado a alertar de que los ejemplos antagónicos pueden afectar a desde simples clasificadores de imágenes hasta a los sistemas de diagnóstico de cáncer, con consecuencias desde benignas hasta mortales. Pero a pesar del peligro, los ejemplos antagónicos no se han estudiado demasiado. Así que algunos investigadores han empezado a pensar en cómo resolver el problema, si es que se puede.

Un nuevo estudio del MIT (EE. UU.) apunta un posible camino que podría superar este desafío. Nos permitiría crear modelos de aprendizaje profundo bastante más resistentes y mucho más difíciles de manipular. Pero para entender cómo funciona, primero repasaremos los conceptos básicos de los ejemplos antagónicos.

Leer más

Fuente: MIT Techonology Review

Sé el primero en comentar en «Claves para que la IA no se deje engañar»

Dejar un comentario

Tu dirección de correo electrónico no será publicada.


*